没有合适的资源?快使用搜索试试~ 我知道了~
离散傅立叶变换,想知道计算机怎么样算的,欢迎查阅
需积分: 0 25 浏览量
2009-09-18
19:54:29
上传
评论
收藏 1.55MB PDF 举报
虽然傅立叶变换大家都学过,但想知道具体怎样算不算容易啊!
资源详情
资源评论
资源推荐

Mathematics of the Discrete Fourier Transform
(DFT)
Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305
March 15, 2002

Page ii
DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, Winter 2002. The latest draft and linked HTML
version are available on-line at http://www-ccrma.stanford.edu/~jos/mdft/.

Contents
1 Introduction to the DFT 1
1.1 DFT Definition . . . ..................... 1
1.2 Mathematics of the DFT . . . . .............. 3
1.3 DFT Math Outline . ..................... 6
2 Complex Numbers 7
2.1 Factoring a Polynomial . . . . . . .............. 7
2.2 The Quadratic Formula . . . . . .............. 8
2.3 Complex Roots . . . ..................... 9
2.4 Fundamental Theorem of Algebra .............. 11
2.5 Complex Basics . . . ..................... 11
2.5.1 The Complex Plane . . . .............. 13
2.5.2 More Notation and Terminology . . . . . . .... 14
2.5.3 Elementary Relationships .............. 15
2.5.4 Euler’s Formula . . . . . . .............. 15
2.5.5 De Moivre’s Theorem . . .............. 17
2.6 Numerical Tools in Matlab . . . .............. 17
2.7 Numerical Tools in Mathematica .............. 23
3 Proof of Euler’s Identity 27
3.1 Euler’s Theorem . . ..................... 27
3.1.1 Positive Integer Exponents . . . . . . . . . .... 27
3.1.2 Properties of Exponents . .............. 28
3.1.3 The Exponent Zero . . . . .............. 28
3.1.4 Negative Exponents . . . .............. 28
3.1.5 Rational Exponents . . . .............. 29
3.1.6 Real Exponents . . . . . . .............. 30
3.1.7 A First Look at Taylor Series . . . . . . . . .... 31
3.1.8 Imaginary Exponents . . .............. 32
iii

Page iv CONTENTS
3.1.9 Derivatives of f(x)=a
x
............... 32
3.1.10 Back to e ....................... 33
3.1.11 Sidebar on Mathematica . . . . . . . . . ...... 34
3.1.12 Back to e
jθ
...................... 34
3.2 Informal Derivation of Taylor Series . . . . . . ...... 36
3.3 Taylor Series with Remainder ................ 37
3.4 Formal Statement of Taylor’s Theorem . . . . . ...... 39
3.5 Weierstrass Approximation Theorem . . . . . . ...... 40
3.6 Differentiability of Audio Signals . . . . . . . . ...... 40
4 Logarithms, Decibels, and Number Systems 41
4.1 Logarithms . . . ....................... 41
4.1.1 Changing the Base . . ................ 43
4.1.2 Logarithms of Negative and Imaginary Numbers . 43
4.2 Decibels . . . . . ....................... 44
4.2.1 Properties of DB Scales . . . . . . . . . ...... 45
4.2.2 Specific DB Scales . . ................ 46
4.2.3 Dynamic Range . . . . ................ 52
4.3 Linear Number Systems for Digital Audio . . . ...... 53
4.3.1 Pulse Code Modulation (PCM) . . . . . ...... 53
4.3.2 Binary Integer Fixed-Point Numbers . . ...... 53
4.3.3 Fractional Binary Fixed-Point Numbers ...... 58
4.3.4 How Many Bits are Enough for Digital Audio? . . 58
4.3.5 When Do We Have to Swap Bytes? . . . ...... 59
4.4 Logarithmic Number Systems for Audio . . . . ...... 61
4.4.1 Floating-Point Numbers . . . . . . . . . ...... 61
4.4.2 Logarithmic Fixed-Point Numbers . . . ...... 63
4.4.3 Mu-Law Companding ................ 64
4.5 Appendix A: Round-Off Error Variance . . . . ...... 65
4.6 Appendix B: Electrical Engineering 101 . . . . ...... 66
5 Sinusoids and Exponentials 69
5.1 Sinusoids . . . . ....................... 69
5.1.1 Example Sinusoids . . ................ 70
5.1.2 Why Sinusoids are Important . . . . . . ...... 71
5.1.3 In-Phase and Quadrature Sinusoidal Components . 72
5.1.4 Sinusoids at the Same Frequency . . . . ...... 73
5.1.5 Constructive and Destructive Interference . . . . . 74
5.2 Exponentials . . ....................... 76
DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, Winter 2002. The latest draft and linked HTML
version are available on-line at http://www-ccrma.stanford.edu/~jos/mdft/.

CONTENTS Page v
5.2.1 Why Exponentials are Important . . . . . . .... 77
5.2.2 Audio Decay Time (T60) .............. 78
5.3 Complex Sinusoids . ..................... 78
5.3.1 Circular Motion . . . . . .............. 79
5.3.2 Projection of Circular Motion . . . . . . . . .... 79
5.3.3 Positive and Negative Frequencies . . . . . .... 80
5.3.4 The Analytic Signal and Hilbert Transform Filters 81
5.3.5 Generalized Complex Sinusoids . . . . . . . .... 85
5.3.6 Sampled Sinusoids . . . . .............. 86
5.3.7 Powers of z ...................... 86
5.3.8 Phasor & Carrier Components of Complex Sinusoids 87
5.3.9 Why Generalized Complex Sinusoids are Important 89
5.3.10 Comparing Analog and Digital Complex Planes . . 91
5.4 Mathematica for Selected Plots . .............. 94
5.5 Acknowledgement . . ..................... 95
6 Geometric Signal Theory 97
6.1 TheDFT ........................... 97
6.2 Signals as Vectors . . ..................... 98
6.3 Vector Addition . . . ..................... 99
6.4 Vector Subtraction . ..................... 100
6.5 Signal Metrics . . . . ..................... 100
6.6 The Inner Product . ..................... 105
6.6.1 Linearity of the Inner Product . . . . . . . .... 106
6.6.2 Norm Induced by the Inner Product . . . . .... 107
6.6.3 Cauchy-Schwarz Inequality . . . . . . . . . .... 107
6.6.4 Triangle Inequality . . . . .............. 108
6.6.5 Triangle Difference Inequality . . . . . . . . .... 109
6.6.6 Vector Cosine ..................... 109
6.6.7 Orthogonality ..................... 109
6.6.8 The Pythagorean Theorem in N-Space . . . .... 110
6.6.9 Projection . . ..................... 111
6.7 Signal Reconstruction from Projections . . . . . . .... 111
6.7.1 An Example of Changing Coordinates in 2D . . . 113
6.7.2 General Conditions . . . . .............. 115
6.7.3 Gram-Schmidt Orthogonalization . . . . . . .... 119
6.8 Appendix: Matlab Examples . . .............. 120
DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, Winter 2002. The latest draft and linked HTML
version are available on-line at http://www-ccrma.stanford.edu/~jos/mdft/.
剩余246页未读,继续阅读









changxiang_qhd
- 粉丝: 0
- 资源: 4

上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制

评论0