下载 >  移动开发 >  iOS > The EM Algorithm and Extensions (2nd Edition)

The EM Algorithm and Extensions (2nd Edition)

2009-05-18 上传大小:2.77MB
分享
刚找到的书,第二版的..
【原书作者】: Geoffrey J. McLachlan, Thriyambakam Krishnan
【ISBN 】: ISBN-10: 0471201707 / ISBN-13: 978-0471201700
【页数 】:360
【开本 】 :
【出版社】 :Wiley-Interscience
【出版日期】:March 14, 2008
【文件格式】:DJVU(请去网上下载windjview阅读
【摘要或目录】:  
Review
"...should be comprehensible to graduates with statistics as their major subject." (Quarterly of Applied Mathematics, Vol. LIX, No. 3, September 2001) --This text refers to the Hardcover edition. 

Book Description
The EM Algorithm and Extensions remains the only single source to offer a 
                            complete and unified treatment of the theory, methodology, and applications of the EM algorithm. The highly applied area of statistics here outlined involves applications in regression, medical imaging, finite mixture analysis, robust statistical modeling, survival analysis, and repeated-measures designs, among other areas. The text includes newly added and updated results on convergence, and new discussion of categorical data, numerical differentiation, and variants of the EM algorithm. It also explores the relationship between the EM algorithm and the Gibbs sampler and Markov Chain Monte Carlo methods. 

About Authors
Geoffrey J. McLachlan, PhD, DSc, is Professor of Statistics in the Department of Mathematics at The University of Queensland, Australia. A Fellow of the American Statistical Association and the Australian Mathematical Society, he has published extensively on his research interests, which include cluster and discriminant analyses, image analysis, machine learning, neural networks, and pattern recognition. Dr. McLachlan is the author or coauthor of Analyzing Microarray Gene Expression Data, Finite Mixture Models, and Discriminant Analysis and Statistical Pattern Recognition, all published by Wiley. 
Thriyambakam Krishnan, PhD, is Chief Statistical Architect, SYSTAT Software at Cranes Software International Limited in Bangalore, India. Dr. Krishnan has over forty-five years of research, teaching, consulting, and software development experience at the Indian Statistical Institute (ISI). His research interests include biostatistics, image analysis, pattern recognition, psychometry, and the EM algorithm. 

     
目录
Preface to the Second Edition. 
Preface to the First Edition. 
List of Examples. 
1. General Introduction. 
1.1 Introduction. 
1.2 Maximum Likelihood Estimation. 
1.3 Newton-Type Methods. 
1.4 Introductory Examples. 
1.5 Formulation of the EM Algorithm. 
1.6 EM Algorithm for MAP and MPL Estimation. 
1.7 Brief Summary of the Properties of EM Algorithm. 
1.8 History of the EM Algorithm. 
1.9 Overview of the Book. 
1.10 Notations. 

2. Examples of the EM Algorithm. 
2.1 Introduction. 
2.2 Multivariate Data with Missing Values. 
2.3 Least Square with the Missing Data. 
2.4 Example 2.4: Multinomial with Complex Cell Structure. 
2.5 Example 2.5: Analysis of PET and SPECT Data. 
2.6 Example 2.6: Multivariate t-Distribution (Known D.F.). 
2.7 Finite Normal Mixtures. 
2.8 Example 2.9: Grouped and Truncated Data. 
2.9 Example 2.10: A Hidden Markov AR(1) Model. 

3. Basic Theory of the EM Algorithm. 
3.1 Introduction. 
3.2 Monotonicity of a Generalized EM Algorithm. 
3.3 Monotonicity of a Generalized EM Algorithm. 
3.4 Convergence of an EM Sequence to a Stationary Value. 
3.5 Convergence of an EM Sequence of Iterates. 
3.6 Examples of Nontypical Behavior of an EM (GEM) Sequence. 
3.7 Score Statistic. 
3.8 Missing Information. 
3.9 Rate of Convergence of the EM Algorithm. 

4. Standard Errors and Speeding up Convergence. 
4.1 Introduction. 
4.2 Observed Information Matrix. 
4.3 Approximations to Observed Information Matrix: i.i.d. Case. 
4.4 Observed Information Matrix for Grouped Data. 
4.5 Supplemented EM Algorithm. 
4.6 Bookstrap Approach to Standard Error Approximation. 
4.7 Baker’s, Louis’, and Oakes’ Methods for Standard Error Computation. 
4.8 Acceleration of the EM Algorithm via Aitken’s Method. 
4.9 An Aitken Acceleration-Based Stopping Criterion. 
4.10 conjugate Gradient Acceleration of EM Algorithm. 
4.11 Hybrid Methods for Finding the MLE. 
4.12 A GEM Algorithm Based on One Newton-Raphson Algorithm. 
4.13 EM gradient Algorithm. 
4.14 A Quasi-Newton Acceleration of the EM Algorithm. 
4.15 Ikeda Acceleration. 

5. Extension of the EM Algorithm. 
5.1 Introduction. 
5.2 ECM Algorithm. 
5.3 Multicycle ECM Algorithm. 
5.4 Example 5.2: Normal Mixtures with Equal Correlations. 
5.5 Example 5.3: Mixture Models for Survival Data. 
5.6 Example 5.4: Contingency Tables with Incomplete Data. 
5.7 ECME Algorithm. 
5.8 Example 5.5: MLE of t-Distribution with the Unknown D.F. 
5.9 Example 5.6: Variance Components. 
5.10 Linear Mixed Models. 
5.11 Example 5.8: Factor Analysis. 
5.12 Efficient Data Augmentation. 
5.13 Alternating ECM Algorithm. 
5.14 Example 5.9: Mixtures of Factor Analyzers. 
5.15 Parameter-Expanded EM (PX-EM) Algorithm. 
5.16 EMS Algorithm. 
5.17 One-Step-Late Algorithm. 
5.18 Variance Estimation for Penalized EM and OSL Algorithms. 
5.19 Incremental EM. 
5.20 Linear Inverse problems. 

6. Monte Carlo Versions of the EM Algorithm. 
6.1 Introduction. 
6.2 Monte Carlo Techniques. 
6.3 Monte Carlo EM. 
6.4 Data Augmentation. 
6.5 Bayesian EM. 
6.6 I.I.D. Monte Carlo Algorithm. 
6.7 Markov Chain Monte Carlo Algorithms. 
6.8 Gibbs Sampling. 
6.9 Examples of MCMC Algorithms. 
6.10 Relationship of EM to Gibbs Sampling. 
6.11 Data Augmentation and Gibbs Sampling. 
6.12 Empirical Bayes and EM. 
6.13 Multiple Imputation. 
6.14 Missing-Data Mechanism, Ignorability, and EM Algorithm. 

7. Some Generalization of the EM Algorithm. 
7.1 Introduction. 
7.2 Estimating Equations and Estimating Functions. 
7.3 Quasi-Score and the Projection-Solution Algorithm. 
7.4 Expectation-Solution (ES) Algorithm. 
7.5 Other Generalization. 
7.6 Variational Bayesian EM Algorithm. 
7.7 MM Algorithm. 
7.8 Lower Bound Maximization. 
7.9 Interval EM Algorithm. 
7.10 Competing Methods and Some Comparisons with EM. 
7.11 The Delta Algorithm. 
7.12 Image Space Reconstruction Algorithm. 

8. Further Applications of the EM Algorithm. 
8.1 Introduction. 
8.2 Hidden Markov Models. 
8.3 AIDS Epidemiology. 
8.4 Neural Networks. 
8.5 Data Mining. 
8.6 Bioinformatics. 

References. 
Author Index. 
Subject Index                        
...展开收缩
综合评分:4
开通VIP 立即下载

评论共有16条

u010244198 2018-05-29 18:25:18
非常经典的算法,资源不错
jlu_leven 2018-04-05 20:32:16
绿色字体,看得有点费眼睛啊
pengyz2014 2017-10-13 17:39:01
非常经典的算法
 

热点文章

VIP会员动态

推荐下载

2nd字体
5C币 1下载
Private edition
20C币 577下载
digital edition
3C币 26下载
2ND字体
5C币 1下载

热门资源标签

关闭
img

spring mvc+mybatis+mysql+maven+bootstrap 整合实现增删查改简单实例.zip

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
点击完成任务获取下载码
输入下载码
为了良好体验,不建议使用迅雷下载
img

The EM Algorithm and Extensions (2nd Edition)

会员到期时间: 剩余下载个数: 剩余C币: 剩余积分:0
为了良好体验,不建议使用迅雷下载
VIP下载
您今日下载次数已达上限(为了良好下载体验及使用,每位用户24小时之内最多可下载20个资源)

积分不足!

资源所需积分/C币 当前拥有积分
您可以选择
开通VIP
4000万
程序员的必选
600万
绿色安全资源
现在开通
立省522元
或者
购买C币兑换积分 C币抽奖
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
为了良好体验,不建议使用迅雷下载
确认下载
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
为了良好体验,不建议使用迅雷下载
开通VIP
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
您的积分不足,将扣除 10 C币
为了良好体验,不建议使用迅雷下载
确认下载
下载
无法举报自己的资源

兑换成功

你当前的下载分为234开始下载资源
你还不是VIP会员
开通VIP会员权限,免积分下载
立即开通

你下载资源过于频繁,请输入验证码

您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:webmaster@csdn.net!

举报

若举报审核通过,可返还被扣除的积分

  • 举报人:
  • 被举报人:
  • *类型:
    • *投诉人姓名:
    • *投诉人联系方式:
    • *版权证明:
  • *详细原因: