%% LVQ 网络训练为根据给定目标对输入向量进行分类。
%输入参数
%X 为 10 个二元素样本输入向量,C 为这些向量所属的类。这些类可以通过 IND2VEC 变换为用作目标 T 的向量。
x = [-3 -2 -2 0 0 0 0 +2 +2 +3;
0 +1 -1 +2 +1 -1 -2 +1 -1 0];
c = [1 1 1 2 2 2 2 1 1 1];
t = ind2vec(c);
%绘制数据点
%红色 = 第 1 类,青色 = 第 2 类
%LVQ 网络表示具有隐藏神经元的向量聚类,并将这些聚类与输出神经元组合在一起以形成期望的类。
figure(1)
colormap(hsv);
plotvec(x,c)
title('Input Vectors');
xlabel('x(1)');
ylabel('x(2)');
%创建一个具有四个隐藏神经元的 LVQ 层
%LVQNET 创建了一个具有四个隐藏神经元的 LVQ 层,学习率为 0.1。然后针对输入 X 和目标 T 配置网络
net = lvqnet(4,0.1);
net = configure(net,x,t);
%绘制竞争神经元权重向量
figure(2)
w1 = net.IW{1};
plot(w1(1,1),w1(1,2),'ow')
title('Input/Weight Vectors');
xlabel('x(1), w(1)');
ylabel('x(2), w(2)');
%训练网络
%改写默认的训练轮数,然后训练网络。训练完成后,重新绘制输入向量“+”和竞争神经元的权重向量“o”。红色 = 第 1 类,青色 = 第 2 类。
net.trainParam.epochs=150;
net=train(net,x,t);
figure(3)
plotvec(x,c);
hold on;
plotvec(net.IW{1}',vec2ind(net.LW{2}),'o');
%使用 LVQ 网络作为分类器
%使用 LVQ 网络作为分类器,其中每个神经元都对应于一个不同的类别。提交输入向量 [0.2; 1]。红色 = 第 1 类,青色 = 第 2 类。
x1 = [0.2; 1];
y1 = vec2ind(net(x1))
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
25最近邻向量量化(LVQ) 网络训练对输入向量进行分类.zip (5个子文件)
jiyuLVOwangluoxunliandexianglianglianghua1
ͼ1.jpg 19KB
ͼ2.jpg 22KB
lvowlxlxllh.m 2KB
训练.png 51KB
ͼ3.jpg 17KB
共 5 条
- 1
资源评论
逼子歌
- 粉丝: 3275
- 资源: 41
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功