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Important Note 
Displaying Hidden Details in this Guide 
link ▽ 
This style guide contains many details that are initially hidden from view. They are marked by 
the triangle icon, which you see here on your left. Click it now. You should see "Hooray" appear 
below. 
Hooray! Now you know you can expand points to get more details. Alternatively, there's an 
"expand all" at the top of this document. 
Background 
C++ is the main development language used by many of Google's open-source projects. As 
every C++ programmer knows, the language has many powerful features, but this power 
brings with it complexity, which in turn can make code more bug-prone and harder to read and 
maintain. 
The goal of this guide is to manage this complexity by describing in detail the dos and don'ts of 
writing C++ code. These rules exist to keep the code base manageable while still allowing 
coders to use C++ language features productively. 
Style, also known as readability, is what we call the conventions that govern our C++ code. 
The term Style is a bit of a misnomer, since these conventions cover far more than just source 
file formatting. 
One way in which we keep the code base manageable is by enforcing consistency. It is very 
important that any programmer be able to look at another's code and quickly understand it. 
Maintaining a uniform style and following conventions means that we can more easily use 
"pattern-matching" to infer what various symbols are and what invariants are true about them. 
Creating common, required idioms and patterns makes code much easier to understand. In 
some cases there might be good arguments for changing certain style rules, but we 
nonetheless keep things as they are in order to preserve consistency. 
Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language with 
many advanced features. In some cases we constrain, or even ban, use of certain features. 
We do this to keep code simple and to avoid the various common errors and problems that 
these features can cause. This guide lists these features and explains why their use is 
restricted. 





 
Open-source projects developed by Google conform to the requirements in this guide. 
Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the 
language. 
Header Files 
In general, every .cc file should have an associated .h file. There are some common 
exceptions, such as unittests and small .cc files containing just a main() function. 
Correct use of header files can make a huge difference to the readability, size and 
performance of your code. 
The following rules will guide you through the various pitfalls of using header files. 
The #define Guard 
▶ 
All header files should have #define guards to prevent multiple inclusion. The format of the 
symbol name should be 
<PROJECT>
_
<PATH>
_
<FILE>
_H_. 
Header File Dependencies 
link ▽ 
Don't use an #include when a forward declaration would suffice. 
When you include a header file you introduce a dependency that will cause your code to be 
recompiled whenever the header file changes. If your header file includes other header files, 
any change to those files will cause any code that includes your header to be recompiled. 
Therefore, we prefer to minimize includes, particularly includes of header files in other header 
files. 
You can significantly minimize the number of header files you need to include in your own 
header files by using forward declarations. For example, if your header file uses 
the File class in ways that do not require access to the declaration of the File class, your 
header file can just forward declare class File; instead of having to #include 
"file/base/file.h". 
How can we use a class Foo in a header file without access to its definition? 
  We can declare data members of type Foo* or Foo&. 





 
  We can declare (but not define) functions with arguments, and/or return values, of 
type Foo. (One exception is if an argument Foo or const Foo& has a non-explicit, 
one-argument constructor, in which case we need the full definition to support 
automatic type conversion.) 
  We can declare static data members of type Foo. This is because static data 
members are defined outside the class definition. 
On the other hand, you must include the header file for Foo if your class subclasses Foo or 
has a data member of type Foo. 
Sometimes it makes sense to have pointer (or better, scoped_ptr) members instead of 
object members. However, this complicates code readability and imposes a performance 
penalty, so avoid doing this transformation if the only purpose is to minimize includes in header 
files. 
Of course, .cc files typically do require the definitions of the classes they use, and usually 
have to include several header files. 
Note: If  you  use  a  symbol Foo in  your  source  file,  you  should  bring  in  a  definition 
for Foo yourself,  either  via an #include or  via  a forward declaration. Do  not  depend  on the 
symbol  being  brought  in  transitively  via  headers  not  directly  included.  One  exception  is 
if Foo is used in myfile.cc, it's ok to #include (or forward-declare) Foo inmyfile.h, instead 
of myfile.cc. 
Inline Functions 
link ▽ 
Define functions inline only when they are small, say, 10 lines or less. 
Definition:You can declare functions in a way that allows the compiler to expand them inline 
rather than calling them through the usual function call mechanism. 
Pros:Inlining a function can generate more efficient object code, as long as the inlined function 
is  small.  Feel  free  to  inline  accessors  and  mutators,  and  other  short,  performance-critical 
functions. 
Cons:Overuse of inlining can actually make programs slower. Depending on a function's size, 
inlining  it  can  cause  the  code size to  increase or  decrease.  Inlining  a  very small  accessor 
function will usually decrease code size while inlining a very large function can dramatically 
increase code size. On modern processors smaller code usually runs faster due to better use 
of the instruction cache. 
Decision: 





 
A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of 
destructors, which are often longer than they appear because of implicit member- and 
base-destructor calls! 
Another useful rule of thumb: it's typically not cost effective to inline functions with loops or 
switch statements (unless, in the common case, the loop or switch statement is never 
executed). 
It is important to know that functions are not always inlined even if they are declared as such; 
for example, virtual and recursive functions are not normally inlined. Usually recursive 
functions should not be inline. The main reason for making a virtual function inline is to place 
its definition in the class, either for convenience or to document its behavior, e.g., for 
accessors and mutators. 
The -inl.h Files 
link ▽ 
You may use file names with a -inl.h suffix to define complex inline functions when needed. 
The definition of an inline function needs to be in a header file, so that the compiler has the 
definition available for inlining at the call sites. However, implementation code properly 
belongs in .cc files, and we do not like to have much actual code in .h files unless there is a 
readability or performance advantage. 
If an inline function definition is short, with very little, if any, logic in it, you should put the code 
in your .h file. For example, accessors and mutators should certainly be inside a class 
definition. More complex inline functions may also be put in a .h file for the convenience of the 
implementer and callers, though if this makes the .h file too unwieldy you can instead put that 
code in a separate -inl.h file. This separates the implementation from the class definition, 
while still allowing the implementation to be included where necessary. 
Another use of -inl.h files is for definitions of function templates. This can be used to keep 
your template definitions easy to read. 
Do not forget that a -inl.h file requires a #define guard just like any other header file. 
Function Parameter Ordering 
link ▽ 
When defining a function, parameter order is: inputs, then outputs. 







 
Parameters to C/C++ functions are either input to the function, output from the function, or 
both. Input parameters are usually values or const references, while output and input/output 
parameters will be non-const pointers. When ordering function parameters, put all input-only 
parameters before any output parameters. In particular, do not add new parameters to the end 
of the function just because they are new; place new input-only parameters before the output 
parameters. 
This is not a hard-and-fast rule. Parameters that are both input and output (often 
classes/structs) muddy the waters, and, as always, consistency with related functions may 
require you to bend the rule. 
Names and Order of Includes 
link ▽ 
Use standard order for readability and to avoid hidden dependencies: C library, C++ library, 
other libraries' .h, your project's .h. 
All of a project's header files should be listed as descentants of the project's source directory 
without use of UNIX directory shortcuts . (the current directory) or .. (the parent directory). 
For example, google-awesome-project/src/base/logging.h should be included as 
#include "base/logging.h" 
In 
dir/foo
.cc, whose main purpose is to implement or test the stuff in 
dir2/foo2
.h, order 
your includes as follows: 
1.  dir2/foo2.h (preferred location — see details below). 
2.  C system files. 
3.  C++ system files. 
4.  Other libraries' .h files. 
5.  Your project's .h files. 
The preferred ordering reduces hidden dependencies. We want every header file to be 
compilable on its own. The easiest way to achieve this is to make sure that every one of them 
is the first .h file #included in some .cc. 
dir/foo
.cc and 
dir2/foo2
.h are often in the same directory 
(e.g. base/basictypes_test.cc and base/basictypes.h), but can be in different 
directories too. 
Within each section it is nice to order the includes alphabetically. 
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