 没有合适的资源？快使用搜索试试~ 我知道了~

 文库首页 后端C++Google C++ 编程规范pdf 整理版

 Google C++ 编程规范pdf 整理版

 Google
编程规范pdf

 5星 · 超过95%的资源 需积分: 10 36 下载量 69 浏览量
 2011-03-09
 09:01:09
 上传
 评论

 收藏 862KB PDF 举报

 温馨提示

 立即下载

 试读
 66页

 Google C++ 编程规范pdf
Google C++ 编程规范pdf
Google C++ 编程规范pdf
Google C++ 编程规范pdf

 资源推荐

 资源详情

 资源评论

 Google C++ 编程规范pdf
 浏览：95

 Google C++ 编程规范pdf
 Google C++ 编程规范pdf
 Google C++ 编程规范pdf

 Google C++编程规范.pdf
 浏览：138
 5星 · 资源好评率100%

 早已开放多时的GoogleC++编码规范这几天引起了业内开发人员的广泛关注。
　　其中，来自硅谷的柯化成认为，这是地球上最好的一份C++编程规范，没有之一，建议广大国内外IT人员研究使用。
　　盛大的资深开发者赵劼表示，“非常同意。Google在这方面下足了功夫，让所有人写出来的代码都使用同样的规范，就好像在工程师编程世界里普及普通话一样。很多资深工程师刚加入的时候被迫学习编码规范，开始不习惯，后

 Google C++ 编程规范.pdf
 浏览：175

 Google C++ 编程规范.pdf Google C++ 编程规范.pdfGoogle C++ 编程规范.pdf

 C++语言编程规范pdf,c++语言编程规范 华为,C,C++
 浏览：35
 5星 · 资源好评率100%

 华为公司 C/C++ 编程规范，可以参考规范自己代码，早日进入大厂

 Google-C++编码规范中文版（最新整理PDF版）
 浏览：8
 5星 · 资源好评率100%

 自己最新整理的Google代码规范，方便大家学习使用，可以节省大家整理时间。

 C++编程规范中文版。pdf
 浏览：192

 C++编程规范中文版，提供专业的C++编程规范资料，欢迎下载

 Google编程规范完整版和C++中文版
 浏览：107

 Google编程规范完整版（英文的）和其中的关于C++语言的中文版

 C++编程规范.pdf
 浏览：150
 4星 · 用户满意度95%

 C++编程规范.pdfC++编程规范.pdfC++编程规范.pdf
C++编程规范.pdf
C++编程规范.pdf
C++编程规范.pdf

 Google+C+++编程规范.pdf
 浏览：128

 Google+C+++编程规范.pdf

 谷歌C++编程规范英文版
 浏览：93

 谷歌C++编程规范PDF版，时间是2017年八月份，共有88页

 Google C++编程规范pdf电子版
 浏览：60
 5星 · 资源好评率100%

 Google C++编程规范

 Google的C++编程规范
 浏览：198

 总结在这里https://blog.csdn.net/jiuchi6525/article/details/84067666

 Google C++编码规范.pdf
 浏览：69

 C++编码规范,google 公司c++程序开发编码规范，值得使用c c++开发程序的人员参考

 Google_C++编码规范_中文版.pdf
 浏览：63

 Google_C++编码规范_中文版.pdf

 Google C++ Style Guide(Google C++编程规范）高清PDF
 浏览：182
 5星 · 资源好评率100%

 Table of Contents
Header Files The #define Guard Header File Dependencies Inline Functions The -inl.h Files Function Parameter Ordering Names and Order of Includes
Scoping Namespaces Nested Classes

 C++编程规范教程PDF,101条规则、准则与最佳实践
 浏览：64
 5星 · 资源好评率100%

 C++编程规范教程PDF,101条规则、准则与最佳实践

 C++编程规范101条规则、准则与最佳实践 PDF扫描版.pdf
 浏览：124
 4星 · 用户满意度95%

 C++编程规范101条规则、准则与最佳实践 PDF扫描版.pdf 个人收集电子书，仅用学习使用，不可用于商业用途，如有版权问题，请联系删除！

 C++编程规范101条规则、准则与最佳实践PDF.rar
 浏览：51

 组织和策略问题　1

第0条　不要拘泥于小节(又名：了解哪些东西不应该标准化)　2

第1条　在高警告级别干净利落地进行编译　4

第2条　使用自动构建系统　7

第3条　使用版本控制系统　8

第4条　做代码审查　9设计风格　11

第5条　一个实体应该只有一个紧凑的职责　12

第6条　正确、简单和清晰第一　13

第7条　编程中应知道何时和如何考虑可伸缩性　14

第8条　不要进行不成熟的优

 华为公司编程规范和范例(C++).pdf
 浏览：75
 5星 · 资源好评率100%

 1 排版
2 注释
3 标识符命名
4 可读性
5 变量、结构
6 函数、过程
7 可测性
8 程序效率
9 质量保证
10 代码编辑、编译、审查
11 代码测试、维护
12 宏

 谷歌C++编程规范英文pdf版
 浏览：51
 5星 · 资源好评率100%

 谷歌的c++编程规范，实际项目中你会发现遵循一套编程风格的重要性，学编程就应该看英文的，开始吃力，后边越来越爽

 Google C++ Style Guide.pdf_编程规范_style_C++_
 浏览：67

 Google的c++语言编程规范，对大型企业应用程序的规范很有帮助，推荐阅读与实践。

 Google C++编程规范（pdf 英文）
 浏览：188
 5星 · 资源好评率100%

 google的编程规范一直受业界推崇，希望大家可以借鉴，源网页地址：http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

 c++ 函数库 和 google C++ 编程规范
 浏览：84
 5星 · 资源好评率100%

 c++ 函数库 chm google C++ 编程规范 pdf

 谷歌C++编程规范（翻译版，赵俊翻译）（清晰文字版pdf）
 浏览：72
 5星 · 资源好评率100%

 谷歌C++编程规范翻译版 不多说，没的说的好东西 武汉大学赵俊翻译

Important Note
Displaying Hidden Details in this Guide
link ▽
This style guide contains many details that are initially hidden from view. They are marked by
the triangle icon, which you see here on your left. Click it now. You should see "Hooray" appear
below.
Hooray! Now you know you can expand points to get more details. Alternatively, there's an
"expand all" at the top of this document.
Background
C++ is the main development language used by many of Google's open-source projects. As
every C++ programmer knows, the language has many powerful features, but this power
brings with it complexity, which in turn can make code more bug-prone and harder to read and
maintain.
The goal of this guide is to manage this complexity by describing in detail the dos and don'ts of
writing C++ code. These rules exist to keep the code base manageable while still allowing
coders to use C++ language features productively.
Style, also known as readability, is what we call the conventions that govern our C++ code.
The term Style is a bit of a misnomer, since these conventions cover far more than just source
file formatting.
One way in which we keep the code base manageable is by enforcing consistency. It is very
important that any programmer be able to look at another's code and quickly understand it.
Maintaining a uniform style and following conventions means that we can more easily use
"pattern-matching" to infer what various symbols are and what invariants are true about them.
Creating common, required idioms and patterns makes code much easier to understand. In
some cases there might be good arguments for changing certain style rules, but we
nonetheless keep things as they are in order to preserve consistency.
Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language with
many advanced features. In some cases we constrain, or even ban, use of certain features.
We do this to keep code simple and to avoid the various common errors and problems that
these features can cause. This guide lists these features and explains why their use is
restricted.

Open-source projects developed by Google conform to the requirements in this guide.
Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the
language.
Header Files
In general, every .cc file should have an associated .h file. There are some common
exceptions, such as unittests and small .cc files containing just a main() function.
Correct use of header files can make a huge difference to the readability, size and
performance of your code.
The following rules will guide you through the various pitfalls of using header files.
The #define Guard
▶
All header files should have #define guards to prevent multiple inclusion. The format of the
symbol name should be
<PROJECT>
_
<PATH>
_
<FILE>
H.
Header File Dependencies
link ▽
Don't use an #include when a forward declaration would suffice.
When you include a header file you introduce a dependency that will cause your code to be
recompiled whenever the header file changes. If your header file includes other header files,
any change to those files will cause any code that includes your header to be recompiled.
Therefore, we prefer to minimize includes, particularly includes of header files in other header
files.
You can significantly minimize the number of header files you need to include in your own
header files by using forward declarations. For example, if your header file uses
the File class in ways that do not require access to the declaration of the File class, your
header file can just forward declare class File; instead of having to #include
"file/base/file.h".
How can we use a class Foo in a header file without access to its definition?
 We can declare data members of type Foo* or Foo&.

 We can declare (but not define) functions with arguments, and/or return values, of
type Foo. (One exception is if an argument Foo or const Foo& has a non-explicit,
one-argument constructor, in which case we need the full definition to support
automatic type conversion.)
 We can declare static data members of type Foo. This is because static data
members are defined outside the class definition.
On the other hand, you must include the header file for Foo if your class subclasses Foo or
has a data member of type Foo.
Sometimes it makes sense to have pointer (or better, scoped_ptr) members instead of
object members. However, this complicates code readability and imposes a performance
penalty, so avoid doing this transformation if the only purpose is to minimize includes in header
files.
Of course, .cc files typically do require the definitions of the classes they use, and usually
have to include several header files.
Note: If you use a symbol Foo in your source file, you should bring in a definition
for Foo yourself, either via an #include or via a forward declaration. Do not depend on the
symbol being brought in transitively via headers not directly included. One exception is
if Foo is used in myfile.cc, it's ok to #include (or forward-declare) Foo inmyfile.h, instead
of myfile.cc.
Inline Functions
link ▽
Define functions inline only when they are small, say, 10 lines or less.
Definition:You can declare functions in a way that allows the compiler to expand them inline
rather than calling them through the usual function call mechanism.
Pros:Inlining a function can generate more efficient object code, as long as the inlined function
is small. Feel free to inline accessors and mutators, and other short, performance-critical
functions.
Cons:Overuse of inlining can actually make programs slower. Depending on a function's size,
inlining it can cause the code size to increase or decrease. Inlining a very small accessor
function will usually decrease code size while inlining a very large function can dramatically
increase code size. On modern processors smaller code usually runs faster due to better use
of the instruction cache.
Decision:

A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of
destructors, which are often longer than they appear because of implicit member- and
base-destructor calls!
Another useful rule of thumb: it's typically not cost effective to inline functions with loops or
switch statements (unless, in the common case, the loop or switch statement is never
executed).
It is important to know that functions are not always inlined even if they are declared as such;
for example, virtual and recursive functions are not normally inlined. Usually recursive
functions should not be inline. The main reason for making a virtual function inline is to place
its definition in the class, either for convenience or to document its behavior, e.g., for
accessors and mutators.
The -inl.h Files
link ▽
You may use file names with a -inl.h suffix to define complex inline functions when needed.
The definition of an inline function needs to be in a header file, so that the compiler has the
definition available for inlining at the call sites. However, implementation code properly
belongs in .cc files, and we do not like to have much actual code in .h files unless there is a
readability or performance advantage.
If an inline function definition is short, with very little, if any, logic in it, you should put the code
in your .h file. For example, accessors and mutators should certainly be inside a class
definition. More complex inline functions may also be put in a .h file for the convenience of the
implementer and callers, though if this makes the .h file too unwieldy you can instead put that
code in a separate -inl.h file. This separates the implementation from the class definition,
while still allowing the implementation to be included where necessary.
Another use of -inl.h files is for definitions of function templates. This can be used to keep
your template definitions easy to read.
Do not forget that a -inl.h file requires a #define guard just like any other header file.
Function Parameter Ordering
link ▽
When defining a function, parameter order is: inputs, then outputs.

Parameters to C/C++ functions are either input to the function, output from the function, or
both. Input parameters are usually values or const references, while output and input/output
parameters will be non-const pointers. When ordering function parameters, put all input-only
parameters before any output parameters. In particular, do not add new parameters to the end
of the function just because they are new; place new input-only parameters before the output
parameters.
This is not a hard-and-fast rule. Parameters that are both input and output (often
classes/structs) muddy the waters, and, as always, consistency with related functions may
require you to bend the rule.
Names and Order of Includes
link ▽
Use standard order for readability and to avoid hidden dependencies: C library, C++ library,
other libraries' .h, your project's .h.
All of a project's header files should be listed as descentants of the project's source directory
without use of UNIX directory shortcuts . (the current directory) or .. (the parent directory).
For example, google-awesome-project/src/base/logging.h should be included as
#include "base/logging.h"
In
dir/foo
.cc, whose main purpose is to implement or test the stuff in
dir2/foo2
.h, order
your includes as follows:
1. dir2/foo2.h (preferred location — see details below).
2. C system files.
3. C++ system files.
4. Other libraries' .h files.
5. Your project's .h files.
The preferred ordering reduces hidden dependencies. We want every header file to be
compilable on its own. The easiest way to achieve this is to make sure that every one of them
is the first .h file #included in some .cc.
dir/foo
.cc and
dir2/foo2
.h are often in the same directory
(e.g. base/basictypes_test.cc and base/basictypes.h), but can be in different
directories too.
Within each section it is nice to order the includes alphabetically.

 剩余65页未读，继续阅读

 评论 收藏

内容反馈

 立即下载

 资源评论

 资源反馈

 评论星级较低，若资源使用遇到问题可联系上传者，3个工作日内问题未解决可申请退款~

 联系上传者

 评论

 	
 liqilovehanxue

 2015-03-14

 不错，有必要再看看

	
 aobenhaimo

 2011-10-20

 虽然是英文版的，但是语法不难，难得是C++的语义。网上有中文在线版的，可以参照着看

 WebIllusory
 	
 粉丝: 54

	资源: 32

 私信

 上传资源 快速赚钱

 	 我的内容管理
 展开

	 我的资源
 快来上传第一个资源

	 我的收益 登录查看自己的收益

	 我的积分
 登录查看自己的积分

	 我的C币
 登录后查看C币余额

	 我的收藏

	 我的下载

	 下载帮助

 前往需求广场，查看用户热搜
 最新资源
 	
 twozyzapp1077262.apk

	
 IS918MPTool-GA-221206 量产工具

	
 ASP源码ASP网上购物系统的设计与实现(源代码+论文)

	
 ASP源码ASP网上购书管理系统(源代码+论文)

	
 ASP源码ASP网上二手商品交易管理系统的设计与实现(源代码+论文)

	
 ASP源码ASP网上报名及在线考试系统的设计与实现(源代码+论文)

	
 ASP源码ASP网上办公自动化系统(源代码+论文+开题报告+文献综述+英文文献+答辩PPT)

	
 Ansible中文权威指南 高清完整版PDF.pdf

	
 ASP源码asp网上办公管理系统设计(源代码+论文)

	
 ASP源码ASP网络硬盘文件资源管理系统(源代码+论文+开题报告+答辩PPT+外文翻译)

 资源上传下载、课程学习等过程中有任何疑问或建议，欢迎提出宝贵意见哦~我们会及时处理！
 点击此处反馈

 安全验证

 文档复制为VIP权益，开通VIP直接复制
开通VIP，畅享复制特权不限次数

 信息提交成功

暂时放弃优惠 立即享受8折

