# Data Fusion
> This are code repo for the Data Fusion course.
## Table of Contents
* [Optimal Estimation](#optimal-estimation)
* [Wiener Filter](#wiener-filter)
* [Kalman Filter](#kalman-filter)
* [Fuzzy Control](#fuzzy-control)
* [Contact](#contact)
<!-- * [License](#license) -->
## Optimal Estimation
### Problem description
Suppose a voltage is a random variable $X$ with normal distribution, the mean value is $5$, and the variance is $0.1$; The random variable x is measured $20$ times by two instruments, and the measurement error of the two instruments is assumed to be a normally distributed random variable with a mean value of $0$ and a variance of $0.1$ and $0.4$ respectively. Caculate the least square estimation (LSE), weighted least square estimation (WLS) and linear minimum variance estimation (LMMSE) of $X$, and calculate the mean square error of the corresponding estimation. Let the measurement equation be $Z=HZ+V$.
### Usage
To handle the problem, run the following file:
`1/code_1/main123.m`
<!--
### Result
| Method | $\hat{X}$ estimation |MSE|
| :-----| :----: | :----:|
| LSE | 5.0615 |0.0063|
| WLS | 5.0292 |0.0040|
| LMMSE | 5.0281 |0.0038|
-->
<!-- You don't have to answer all the questions - just the ones relevant to your project. -->
## Wiener Filter
### problem description
Let $y (n) =x (n) +v (n)$, where $x(n)=10sin(\frac{\pi n}{128}+\frac{\pi}{3})$,$v(n)$
is white noise with variance of $1.25$. Design FIR and IIR Wiener filter to estimate the signal $x (n)$.
### Usage
To handle the problem, run the following file:
`1/code_1/main.m`
<!--
### Result
![wiener_filter](./1/code_2/img/wiener_filter.png)
-->
## Kalman Filter
### Basic Kalman Filter
`1/code_3/kalman.m`
### Constant Gain Kalman Filter
`1/code_3/kalman_constant_gain.m`
### Square root Kalman Filter
`1/code_3/kalman_sqrt.m`
### Forgetting Factor Kalman Filter
`1/code_3/kalman_forgetting_factor.m`
### Adaptive Kalman Filter
`1/code_3/kalman_adaptive.m`
### Limited K Reduction Kalman Filter
`1/code_3/kalman_restain_K.m`
### Extended Kalman Filter
`2/code_0/EKF.m`
### Unscented Kalman Filter
`2/code_0/UKF.m`
### Particle Filter
`2/code_0/PF.m`
### Federated Kalman Filter
`2/code_1/federated_filter.m`
### Decentralized Kalman filter
`2/code_1/center_federated_filter.m`
## Fuzzy Control
### Basic method
`4/code/TS_model.m`
### T-S method
`4/code/TS_model.m`
## Contact
changjingliu@sjtu.edu.cn
<!-- Optional -->
<!-- ## License -->
<!-- This project is open source and available under the [... License](). -->
<!-- You don't have to include all sections - just the one's relevant to your project -->
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
The_solution_of_the_data_fusion__course_of_SJTU._M_Data_Fusion_Course.zip (50个子文件)
Data_Fusion_Course-main
LICENSE 1KB
1
code_2
FIR_wf.m 299B
main.m 1KB
img
wiener_filter.png 168KB
pridict_IIR_wf.m 407B
IIR_wf.m 407B
code_1
main123.m 834B
WLSM.m 133B
MVE.m 126B
LSM.m 112B
code_3
kalman_restrain_K.m 680B
main_restrain_diffuse.m 3KB
main.m 3KB
kalman_adaptive.m 573B
kalman_gainfix.m 340B
kalman_Sk.m 655B
kalman_forgetting_factor.m 447B
kalman_sqrt1.m 2KB
kalman_sqrt.m 2KB
main_diffuse.m 3KB
main_sqrt.m 3KB
kalman.m 353B
2
code_0
EKF_standard.m 2KB
PF.m 1KB
compare.m 7KB
main_UKF_PF.m 2KB
UKF.m 2KB
main.m 3KB
KF.m 349B
UKF_example.m 3KB
main_UKF.m 4KB
EKF.m 3KB
code_1
center_federated_filter.m 12KB
federated_filter.m 8KB
README.md 3KB
4
code
untitled2.m 386B
Untitled.m 6KB
fuzzy.m 687B
TS_model.m 4KB
3
code_2
EKF_standard.m 4KB
PF.m 1KB
main_UKF_PF.m 2KB
UKF.m 2KB
BP.m 3KB
code_0
Copy_of_BP_standard.m 914B
BP_standard.m 2KB
code_1
BP_RBF.m 3KB
RBF.m 2KB
BP.m 3KB
example.m 5KB
共 50 条
- 1
资源评论
普通网友
- 粉丝: 1127
- 资源: 5293
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功