你将收获

培养推荐算法、机器学习工程师

学会推荐系统核心算法

适用人群

适合技术开发、算法开发、架构师等; 大数据、机器学习、推荐系统和搜索引擎系统开发者; 相关从业者或转行大数据和人工智能。

课程介绍

推荐算法系统CF协同过滤用户行为挖掘 

一、课程优势

本课程有陈敬雷老师的清华大学出版社配套新书教材《分布式机器学习实战》人工智能科学与技术丛书,

新书配合此实战课程结合学习,一静一动,互补高效学习!

本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,技术前沿热门,是真正的互联网工业级实战项目。

二、课程简介

       协同过滤 (Collaborative Filtering, 简称 CF)作为经典的推荐算法之一,在电商推荐推荐系统中扮演着非常重要的角色,比如经典的推荐为如看了又看、买了又买、看了又买、购买此商品的用户还相同购买等都是使用了协同过滤算法。尤其当你网站积累了大量的用户行为数据时,基于协同过滤的算法从实战经验上对比其他算法,效果是最好的。基于协同过滤在电商网站上用到的用户行为有用户浏览商品行为,加入购物车行为,购买行为等,这些行为是最为宝贵的数据资源。比如拿浏览行为来做的协同过滤推荐结果叫看了又看,全称是看过此商品的用户还看了哪些商品。拿购买行为来计算的叫买了又买,全称叫买过此商品的用户还买了。如果同时拿浏览记录和购买记录来算的,并且浏览记录在前,购买记录在后,叫看了又买,全称是看过此商品的用户最终购买。如果是购买记录在前,浏览记录在后,叫买了又看,全称叫买过此商品的用户还看了。在电商网站中,这几个是经典的协同过滤算法的应用。
     下面就给大家直接深度解密推荐系统的最核心精髓部分!!!


三、老师介绍

陈敬雷  充电了么创始人,CEO兼CTO

陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。

陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》已出版、《自然语言处理原理与实战(人工智能科学与技术丛书)》。

目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。

 

讨论留言

正在加载中...